
Journal of Sound and Vibration (1997) 206(1), 61–85

SYMBOLIC COMPUTATION OF FUNDAMENTAL
SOLUTION MATRICES FOR LINEAR

TIME-PERIODIC DYNAMICAL SYSTEMS

S. C. S  E. A. B

Nonlinear Systems Research Laboratory, Department of Mechanical Engineering,
201 Ross Hall, Auburn University, AL 36849, U.S.A.

(Received 25 October 1996, and in final form 14 April 1997)

A new technique which employs both Picard iteration and expansion in shifted Chebyshev
polynomials is used to symbolically approximate the fundamental solution matrix for linear
time-periodic dynamical systems of arbitrary dimension explicitly as a function of the
system parameters and time. As in previous studies, the integration and product operational
matrices associated with the Chebyshev polynomials are employed. However, the need to
algebraically solve for the Chebyshev coefficients of the fundamental solution matrix is
completely avoided as only matrix multiplications and additions are utilized. Since these
coefficients are expressed as homogeneous polynomials of the system parameters, closed
form approximations to the true solutions may be obtained. Also, because this method is
not based on expansion in terms of a small parameter, it can successfully be applied to
periodic systems whose internal excitation is strong. Two formulations are proposed. The
first is applicable to general time periodic systems while the second approach is useful when
the system equations contain a constant matrix. Three different example problems,
including a double inverted pendulum subjected to a periodic follower force, are included
and CPU times and convergence results are discussed.
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1. INTRODUCTION

The study of dynamical systems governed by a set of ordinary differential equations with
periodic coefficients is of great theoretical and practical importance in various fields of
science and engineering. These equations generally represent the perturbed dynamics about
a steady state periodic motion of the system. In many situations, the linearized perturbed
equations may be sufficient for the prediction of stability and therefore the problem reduces
to a set of linear differential equations with periodic coefficients. The stability conditions
are determined by the requirement that the eigenvalues of the fundamental solution matrix
evaluated at the end of the principal period (called the Floquet multipliers) must lie within
the unit circle in the complex plane. For various bifurcation studies, it is necessary to
generate the non-linear equations of the perturbed dynamics. However, the local
bifurcation conditions are once again determined by the nature of the Floquet multipliers
of the linearized system. Further, fundamental solution matrices also play an important
role in designing feedback controllers for all dynamic systems. If the fundamental solution
matrix could be computed as a function of the system parameters, then it would be possible
to determine the stability (bifurcation) conditions and the controller gains in a closed form.
In this study an attempt has been made toward achieving this goal.

It is well known that exact solutions of periodic systems are possible only in a very
limited number of cases (see section 5.1), and, in general such solutions do not exist. Two
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common asymptotic methods that have been used in the past to yield an approximate
fundamental solution matrix with parametric dependence in closed form include the
perturbation method [1] and the averaging technique [2]. These methods are limited in
application to systems with weak internal excitation since they are based on expanding
the solution in terms of a small parameter that multiplies the time-periodic terms. When
the excitation becomes strong, the parameter is not small and the accuracy of the
solution is very poor. Moreover, increasing the order of the approximate solution is
usually very difficult and does not guarantee uniform convergence to the true solution.
A recent approximation technique of Guttalu and Flashner [3, 4] for computing the
fundamental solution matrix evaluated at the end of the principal period (called the
Floquet transition matrix) by truncated point mappings avoids the restriction of a small
periodic parameter but is computationally expensive in terms of CPU time. In addition,
the fundamental solution matrix is not obtained in closed form as an explicit function
of time.

Another approximation technique which has developed recently involves expanding
periodic coefficients in terms of Chebyshev polynomials and was first introduced by
Sinha and Chou [5] and Sinha et al. [6]. Although these applications were limited to
second order scalar equations only, a later study by Sinha and Wu [7] outlined a scheme
to obtain an approximate fundamental solution matrix in closed form for a system of
second order equations. The approach was based on the idea that the state vector and
the periodic system matrix can be expanded in terms of Chebyshev polynomials over
the principal period. By employing the integration and product operational matrices
associated with the polynomials, this expansion reduces the original problem to a set
of linear algebraic equations for the Chebyshev coefficients of the state vector from
which the solution in the interval of one period is obtained. In later studies [8, 9], this
method was applied to single-degree-of-freedom problems to symbolically approximate
the solution in terms of the system parameters. It was shown that a ten- or twelve-term
Chebyshev expansion provides much better accuracy compared to a sixteenth-order
perturbation series when the coefficients of the periodic terms are large. However, the
Chebyshev coefficients of the solution must be obtained using Cramer’s rule, matrix
inversion, etc., and therefore this approach is impractical for systems of higher
dimension.

In this paper, a new technique which employs both Picard iteration and expansion
in shifted Chebyshev polynomials is used to symbolically approximate the fundamental
solution matrix for time-periodic dynamical systems of arbitrary dimension explicitly as
a function of the system parameters and time. Since this method is not based on
expansion in terms of a small parameter, it can successfully be applied to periodic
systems with strong internal excitations. As in the previously mentioned studies,
the integration and product operational matrices associated with the shifted Chebyshev
polynomials are employed. However, the need to algebraically solve for the Chebyshev
coefficients is completely avoided by employing Picard iterations (sequence of
approximations). The Chebyshev coefficients of the resulting fundamental solution
matrix are expressed as homogeneous polynomials of the system parameters, thus
enabling a closed form approximation to the true solution to be obtained. Two
formulations, one applicable to general periodic systems and one for equations
which contain a constant system matrix, are outlined and applied to three
different example problems including a double inverted pendulum subjected to a
periodic follower force. CPU times are included and convergence results are discussed
in detail.
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2. PICARD ITERATION

The first non-homogeneous differential equation

dx(t)/dt= f(x(t), t), x(t0)= x0, (1)

may be expressed in an equivalent integral form such as

x(t)= x0 +g
t

t0

f(x(t), t) dt, (2)

where t is a dummy variable. Assuming an initial approximation x(0)(t)= x0 and inserting
it on the right side of equation (2), an approximation x(1)(t) is generated. This is inserted
back into the integral to generate the second approximation x(2)(t), etc. This process, called
Picard iteration, satisfies the recurrence equation

x(k+1)(t)= x0 +g
t

t0

f(x(k)(t), t) dt. (3)

and results in a sequence of approximations to the true solution x(t) [10]. If f(x, t) is
defined, continuous, and satisfies a Lipschitz condition with Lipschitz constant L in an
interval about t0, then equation (3) may be used to obtain the relationship

=x(k)(t)− x(k−1)(t)=EMLk−1(t− t0)k/k!, (4)

from which the neighborhood of convergence h= t− t0 is obtained as

hE (1/L) ln (1+LB/M), (5)

where =x(t)− x0=QB and =f(x0, t)=QM [11]. In contrast to asymptotic techniques, all of
the system parameters are treated equally in Picard iteration so that the convergence varies
radially in the parameter space. This technique is of great theoretical importance in the
theory of the existence of solutions of equation (1), but the difficulty of evaluating the
integral in equation (2) has made it impractical for general numerical computations even
for the special case of linear time-varying equations. It will be seen that this obstacle is
circumvented here by expanding the periodic system matrix in Chebyshev polynomials. By
employing the associated operational matrices defined in section 3, the successive
integrations associated with the Picard iterations are replaced by simple matrix
multiplications.

3. SHIFTED CHEBYSHEV POLYNOMIALS AND THE OPERATIONAL MATRICES

The shifted Chebyshev polynomials of the first kind are defined in terms of the standard
Chebyshev polynomials of the first kind Tr(t) valid over the interval [−1, 1] by using the
change of variable

t:(t+1)/2. (6)

Thus, the shifted Chebyshev polynomials of the first kind are given by

T*r (t)=Tr(2t−1), 0E tE 1, (7)

and are valid over the interval [0, 1]. All properties of T*r (t) can be deduced from those
of Tr(2t−1). The orthogonality and recurrence relations for these polynomials can be
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found in references [12, 13]. If T*(t)= (T*0 (t) T*1 (t) · · · T*m−1(t))T is an m×1 column
vector of the polynomials, then the outer product of two of these vectors is

T*(t)T*T(t)=

T*0 (t) T*1 (t) T*2 (t) · · · T*m−1(t)

T*1 (t) (T*0 (t)+T*2 (t))/2 (T*1 (t)+T*3 (t))/2 · · · T*m (t)+T*m−2(t)/2

G
G

G

G

G

K

k

G
G

G

G

G

L

l

T*2 (t) T*1 (t)+T*3 (t)/2 T*0 (t)+T*4 (t)/2 · · · ··· . (8)
···

···
···

· · ·
···

T*m−1(t) T*m (t)+T*m−2(t)/2 · · · · · · T*0 (t)+T*2(m−1)(t)/2

Generally, an arbitrary continuous time function f(t) can be approximated by a
finite shifted Chebyshev series over the interval [0, 1] where the coefficients of
the polynomials can be obtained as shown in [14, 15]. If two such functions are expanded
as

f(t)= s
m−1

r=0

arT*r (t), g(t)= s
m−1

r=0

brT*r (t), (9)

then

f(t)g(t)= (a0a1a2 · · · am−1)T*(t)T*T(t)(b0b1b2 · · · bm−1)T, (10)

where ar and br are Chebyshev coefficients of the functions f(t) and g(t), respectively. Using
equation (8), equation (10) can be rewritten as

f(t)g(t)=T*T(t)Qab, (11)

where Qa is the product operational matrix corresponding to f(t) given by

a0 a1/2 a2/2 · · · am−1/2

a1 a0 + a2/2 1
2(a1 + a3) · · · 1

2(am−2 + am)

G
G

G

G

G

K

k

G
G

G

G

G

L

l

Qa = a2
1
2(a1 + a3) a0 + a4/2 · · · ··· (12)

···
···

···
· · ·

···
am−1

1
2(am−2 + am) · · · · · · a0 + a2(m−1)/2

and b=(b0b1b2 . . . bm−1)T [7]. The ar coefficients with rqm−1 in equation
(12) may be set to zero. The general recursive formula for integration of an m×1
vector of shifted Chebyshev polynomials of the first kind may be written in vector
form as

g
t

0 g
t0

0

· · ·
(k times) g

tk−2

0

T*(tk−1) dtk−1 · · · dt1 dt0 =GkT*(t), (13)
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where G is the m×m integration operational matrix given by

1/2 1/2 0 0 0 · · · 0

−1/8 0 1/8 0 0 · · · 0

−1/6 −1/4 0 1/12 0 · · · 0

G= 1/16 0 −1/8 0 1/16 · · · ··· ;
G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

−1/30 0 0 −1/12 0 · · · 0
···

···
···

···
· · ·

· · · 1/4(m−1)

(−1)m/2m(m−2) 0 0 · · · 0 −1/4(m−2) 0

(14)

( )T denotes the transpose of the quantity ( ), and all tj’s are dummy variables [7]. Use of
the G matrix results in a forward difference recurrence procedure in which the (m+1)th
term is truncated in order to keep the polynomial vector the same length.

Let the nm× n Chebyshev polynomial matrix be defined as

T
 (t)= In&T*(t), (15)

where & signifies the Kronecker product defined in Appendix A. Then the recursive
formula for integration of this matrix can be written as

g
t

0 g
t0

0

· · ·
k times) g

tk−2

0

T
 (tk−1) dtk−1 · · · dt1 dt0 =G
 kT
 (t), (16)

where G
 = In&G is of dimension nm× nm. Also, the product of two periodic matrix
functions which have been expanded in Chebyshev polynomials can be expressed as

U(t)C(t)=A'T
 (t)T
 T(t)B=T
 T(t)Q
 AB, (17)

where

A'= &a
T
11
···

aT
n1

· · ·
· · ·
· · ·

aT
1n
···

aT
nn', B= &b11

···
bn1

· · ·
· · ·
· · ·

b1n
···

bnn' (18)

are n× nm and nm× n, respectively, and aij and bij are the Chebyshev coefficient vectors
in the expansion of Uij(t) and Cij(t), respectively. The nm× nm matrix

Q
 A = &Qa11···
Qan1

· · ·
· · ·
· · ·

Qa1n···
Qann' (19)

consists of an n× n array of product operational matrices corresponding to the elements
of U(t). (Note that if U(t) is symmetric then A'=AT.) The Chebyshev expansion of the
n-dimensional identity matrix is In =T
 T(t)I
 = I
 TT
 (t), where

I
 = In&(1 0 · · ·
(m−1)

0)T

is the nm× n identity coefficient matrix.
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4. METHOD OF ANALYSIS

4.1.   

Consider a system of n linear time-periodic differential equations

ẋ(t, a)=A(t, a)x(t, a), x(0, a)= x0, (20)

where x(t, a)$RN is the state vector which depends on the time t$R+ and a parameter
vector a$RL (the derivative is with respect to time), and the n× n matrix A(t, a)
can be written as A(t, a)=A1(a)f1(t)+A2(a)f2(t)+ · · ·+Ar(a)fr(t). The functions
fi(t)= fi(t+ bi), i=1, . . . , r are periodic with periodic bi and the n× n constant
matrices Ai(a), i=1, . . . , r contain the coefficient of these periodic functions.
Assuming that the frequencies are commensurate, the lowest positive number T
such that qibi =T for positive integers qi is the principal period of the system
matrix A(t+T, a)=A(t, a). The fundamental solution matrix F(t, a) of equation
(20) satisfies F� (t, a)=A(t, a)F(t, a); F(0, a)= I and the solution for the given
initial conditions may be expressed as x(t, a)=F(t, a)x0. In the following, two
formulations for finding F(t, a) via Picard iteration and Chebyshev expansion are
presented.

4.2.   

The first formulation is applicable to general systems of the form of equation (20). An
equivalent integral form of equation (20) is

x(t, a)= x0 +g
t

0

A(t, a)x(t, a) dt. (21)

As the zeroth approximation, let x(0)(t, a)= x(0, a)= x0. Use of equation (21) then leads
to the first approximation

x(1)(t, a)= x0 +g
t

0

A(t0, a)x(0)(t0, a) dt0 =$I+g
t

0

A(t0, a) dt0%x0, (22)

where t0 is a dummy variable. The second approximation is obtained from equation (21)
as

x(2)(t, a)= x0 +g
t

0

A(t1, a)x(1)(t1, a) dt1

=$I+g
t

0

A(t1, a) dt1 +g
t

0

A(t1, a) g
t1

0

A(t0, a) dt0 dt1%x0, (23)

where t1 is another dummy variable. Further iteration leads to the (k+1)th approximation

x(k+1)(t, a)= x0 +g
t

0

A(tk , a)x(k)(tk , a) dtk
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=$I+g
t

0

A(tk , a) dtk +g
t

0

A(tk , a) g
tk

0

A(tk−1, a) dtk−1 dtk

+· · ·+g
t

0

A(tk , a) · · · g
t1

0

A(t0, a) dt0 · · · dtk%x0, (24)

where t0, . . . , tk are all dummy variables. The series of integrals is an approximation to
the fundamental matrix F(t, a) since it is truncated after a finite number of terms, while
the true solution is an infinite series. If A(t, a)=A(a) is a constant matrix, then this series
results in the power series definition of the exponential solution of equation (20), namely

x(t, a)= eA(a)tx0 = [I+A(a)t+[A(a)t]2/2!+ [A(a)t]3/3!+ · · · ]x0. (25)

Unfortunately, the symbolic evaluation of the fundamental matrix via equation (24), in
general, leads to complicated expressions for F(t, a) and, in addition, is not efficient when
rq 1 due to the necessary repeated integration by parts. Instead, the following approach
is taken which results in a more efficient approximation of F(t, a). First, the
transformation t=Tt to equation (20) normalizes the system matrix’s principal period to
one and, after multiplying through by T, the equation is

dx(t, a)/dt=A�(t, a)x(t, a), A�(t+1, a)=A�(t, a), x(0, a)= x0, (26)

where

A�(t, a)=A� 1(a)f1(t)+A� 2(a)f2(t)+ · · ·+A� r(a)fr(t), fi(t)= fi(t+1),

and

A� i(a)=TAi(a), i=1, . . . , r.

Next, the Chebyshev polynomial matrix defined in section 2 is used in expanding the
normalized system matrix in m shifted Chebyshev polynomials of the first kind as

A�(t, a)=T
 T(t)D(a)=D'(a)T
 (t), (27)

where the nm× n (respectively n× nm) Chebyshev coefficient matrix D(a) (respectively
D'(a)) is defined as

D(a)= s
r

i=1

A� i(a)&di , D'(a)= s
r

i=1

A� i(a)&dT
i . (28)

The m×1 column vectors di (respectively 1×m row vectors dT
i ) contains the known

coefficients in the Chebyshev expansion of the 1-periodic functions as

fi(t)= s
m−1

j=0

dijT*j (t)=T*T(t)di = dT
i T*(t), (29)

where T*j (t) (0E tE 1) are the Chebyshev polynomials. Then, using the integration
operational matrix and the identity coefficient matrix defined in section 2, equation (22)
can be written as

x(1,m)(t, a)=$I+g
t

0

T
 T(t0)D(a) dt0%x0 =T
 T(t)[I
 +G
 TD(a)]x0, (30)
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where the superscript (1, m) indicates that the first Picard iteration is approximated by m
Chebyshev polynomials. Furthermore, using the product operational matrix also defined
in section 2, equation (23) can be written as

x(2,m)(t, a)=$T
 T(t)[I
 +G
 TD(a)]+g
t

0

D'(a)T
 (t1)T
 T(t1)G
 TD(a) dt1%x0

=$T
 T(t)[I
 +G
 TD(a)]+g
t

0

T
 T(t1)Q
 D(a)G
 TD(a) dt1%x0

=T
 T(t)[I
 +G
 TD(a)+G
 TQ
 D(a)G
 TD(a)]x0, (31)

where Q
 D(a)= sr
i=1 A� i(a)&Qdi is expressed in terms of the product operational matrices

Qdi corresponding to the Chebyshev coefficients of the periodic functions fi(t). Continuing
in this way, the approximate fundamental matrix solution of equation (20) over the
principal period can be written in terms of the Chebyshev polynomials as

F(p,m)(t, a)=T
 T(t)$I
 +0 s
p

k=1

[L(a)]k−11P(a)%=T
 T(t)B(a), (32)

where B(a) contains the Chebyshev coefficients of the elements of F(t, a) and is expressed
in terms of L(a)=G
 TQ
 D(a) and P(a)=G
 TD(a), which are nm× nm and nm× n,
respectively. By selecting a value for p, the number of Picard iterations, this truncated
expression gives an approximate solution to any desired degree of accuracy. While this is
valid only in the interval t$[0, T] or t$[0, 1], the solution can be easily extended for
tqT(tq 1) by utilizing the formula

F(p,m)(t, a)=F(p,m)(h, a)[F(p,m)(1, a)]k, (33)

where t= k+ h, h$[0, 1], k=1, 2, . . . . The matrix F(p,m)(1, a) is the Floquet Transition
Matrix (FTM) whose eigenvalues (Floquet multipliers) determine the stability
characteristics of the system. While these expressions are in terms of the normalized time,
the substitution t= t/T yields the results in real time. It should also be noted that, using
the special properties of the Kronecker product operation, L(a) and P(a) can be written
in a more computationally efficient form as

L(a)= s
r

i=1

A� i(a)&[GTQdi ], P(a)= s
r

i=1

A� i(a)&[GTdi ], (34)

in which the amount of effort spent in matrix multiplications is minimized.
Thus the integrations in equation (24) are replaced by the more computationally efficient

matrix multiplications in equation (32), and an approximation to the fundamental matrix
in terms of the shifted Chebyshev polynomials is made by including a finite number p of
Picard iterations and an appropriate number m of Chebyshev polynomials (which
determines the sizes of the various matrices). The Chebyshev expansion of the periodic
matrix A�(t, a) not only provides the efficient symbolic approximation of the fundamental
matrix, but also results in a more compact result than if the actual integrations in equation
(24) had been performed. Also, because the solution is approximated via Picard iterations,
it is not pre-expanded in a Chebyshev series with unknown coefficients as was done in
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earlier studies [7, 8]. This eliminates the need to solve for the Chebyshev coefficient matrix
B(a) via Cramer’s rule, matrix inversion, etc., and thus permits the symbolic evaluation
of this matrix. Therefore an approximate expression for the fundamental solution matrix
can be obtained in terms of the system parameter vector a and the normalized time t via
simple matrix multiplications and additions. Three different problems are analyzed using
this formulation in section 5.

4.3.        

Now consider a specific form of equation (20) given by

ẋ(t, a)= [A1 +At(t, a)]x(t, a), x(0, a)= x0, (35)

where the matrix A1 is independent of both time and the system parameters and
At(t, a)=A2(a)f2(t)+A3(a)f3(t)+ · · ·+Ar(a)fr(t). The function f1(t) is unity and has a
one-term (in T*0 (t)) Chebyshev expansion. The associated product operational matrix is
then the identity matrix, and the application of equation (32) to the entire system results
in an expression which includes the power series of the exponential matrix solution for the
constant matrix A1 of the form of equation (25). While the general formulation above may
provide satisfactory convergence if the elements in A1 are not very large, the required
number of Picard iterations to achieve accuracy may significantly increase as these matrix
elements are allowed to increase in magnitude. This is due to the well-known slow
convergence rate of the power series solution in equation (25). It is desired, therefore, to
take advantage of the closed-form solution of the constant part of equation (35) with the
anticipation that a faster convergence would be achieved. For this purpose, the
time-periodic term in equation (35) is treated as a forcing term in a non-homogeneous
system which has the computable generating solution eA1t. Use of the superposition integral
then results in the integral equation

x(t, a)= eA1t$x0 +g
t

0

e−A1tAt(t, a)x(t, a) dt%, (36)

which may be iterated similarly to equation (24) to yield the (k+1)th approximation

x(k+1)(t, a)= eA1t$x0 +g
t

0

e−A1tkAt(tk , a)x(k)(tk , a) dtk%
=eA1t$I+g

t

0

e−A1t1At(t1, a) eA1t1 dt1

+g
t

0

e−A1t1At(t1, a) eA1t1 g
t1

0

e−A1t0At(t0, a) eA1t0 dt0 dt1 + · · · %x0 (37)

from which the approximate fundamental solution matrix is obtained. However, as with
equation (24), the direct symbolic evaluation of equation (37), in general, leads to
complicated expressions and is not efficient for kq 1 due to repeated integrations by parts.
Instead, the method of expanding in Chebyshev polynomials after normalizing the
principal period to identity as in section 4.2 is utilized.

After normalizing, the Chebyshev expansions

A� t(t, a)=T
 T(t)D(a), eA�1t =T
 T(t)E, e−A� 1t =T
 T(t)F (38)
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are made where A� 1 =TA1 and A� t(t, a)=TAt(t, a) are the normalized system matrices.
The nm× n Chebyshev coefficient matrix D(a) is defined as in equations (28) and (29) while
the definitions of E and F depend on whether the eigenvalues of A� 1 are real, imaginary,
or complex. If they occur in n/2 imaginary pairs 2v*i i, then the coefficient matrices of
eA�1t = sn/2

i=1 Ci cos (vit)+Si sin (vit) and e−A�1t = sn/2
i=1 Ci cos (vit)−Si sin (vit) may be

expressed as

E= s
n/2

i=1

Ci&bc(vi)+Si&bs(vi), F= s
n/2

i=1

Ci&bc(vi)−Si&bs(vi), (39)

where the m×1 Chebyshev coefficient column vectors bc(vi) and bs(vi) may alternately
be defined in terms of Bessel functions in the expansions of cos (vit)=T*T(t)bc(vi) and
sin (vit)=T*T(t)bs(vi) [12, 17]. If the eigenvalues ai , i=1, . . . , n are real, then the
coefficient matrices of eA�1t = sn

i=1 Zi eait and e−A�1t = sn
i=1 Zi e−ait are

E= s
n

i=1

Zi&z(ai), F= s
n

i=1

Zi&z(−ai), (40)

where z(ai) may also be defined in terms of Bessel functions in the expansion of
eait =T*T(t)z(ai) [17]. If the eigenvalues occur in n/2 complex pairs ai 2v*i i, then the
product operational matrix may be used to yield the Chebyshev coefficient column vectors
as

eait cos (vit)= zT(ai)T*(t)T*T(t)bc(vi)=T*T(t)Qz(ai)bc(vi),

eait sin (vit)= zT(ai)T*(t)T*T(t)bs(vi)=T*T(t)Qz(ai)bs(vi), (41)

from which the coefficient matrices of eA�1t = sn/2
i=1 Cz

i eait cos (vit)+Sz
i eait sin (vit) and

e−A�1t = sn/2
i=1 Cz

i e−ait cos (vit)−Sz
i e−ait sin (vit) are obtained as

E= s
n/2

i=1

Cz
i &(Qz(ai)bc(vi))+Sz

i &(Qz(ai)bs(vi)),

F= s
n/2

i=1

Cz
i &(Qz(−ai)bc(vi))−Sz

i &(Qz(−ai)bs(vi)). (42)

Combinations of these may easily be treated by summing all the appropriate terms in
equations (39), (40), and (42). Substituting the expansions of equation (38) into the
bracketed portion of equation (37) yields the approximate fundamental solution matrix
over the principal period as

F(p,m)(t, a)= eA�1tT
 T(t)$I
 +0 s
p

k=1

[H(a)]k−11K(a)%=eA�1tT
 T(t)R(a), (43)
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where H(a)=G
 TQ
 FQ
 D(a)Q
 E and K(a)=G
 TQ
 FQ
 D(a)E are generally much less sparse than
the corresponding L(a) and P(a) matrices in the general formulation. Unlike the general
formulation in which all Ai(a) matrices may include one or more parameters, parametric
dependence in the constant A1 matrix is impractical in this formulation since the product
operational matrices Q
 E and Q
 F in equation (43) cannot be efficiently evaluated in
terms of a parameter. Given this restriction, however, the faster convergence of this
formulation generally results in the use of much fewer Picard iterations to achieve a
desired accuracy as opposed to use of the general formulation via equation (32).
Applications of this formulation to a commutative system and to the Mathieu equation
are given in section 5.

5. EXAMPLES

5.1.   

Consider the commutative p-periodic system

0ẋ1

ẋ21=$ −1+ a cos2 t
−1− a sin t cos t

1− a sin t cos t
−1+ a sin2 t %0x1

x21, (44)

where a is the system parameter. The exact fundamental solution matrix of the system is
[16]

F(t, a)=$ e(a−1)t cos t
−e(a−1)t sin t

e−t sin t
e−t cos t%. (45)

It is desired to compare this exact solution with the proposed approximate one. After
normalizing the period to one as in equation (26), the new periodic system matrix is
A�(t, a)=A� 1(a)+A� 2(a) cos 2pt+A� 3(a) sin 2pt, where

A� 1(a)= p$−1+ a/2
−1

1
−1+ a/2%, A� 2(a)= p$a/2

0
0

−a/2%,
A� 3(a)= p$ 0

−a/2
−a/2

0 %, (46)

so that the product operational matrices for f1(t)=1 (which is the identity matrix),
f2(t)= cos 2pt, and f3(t)= sin 2pt are utilized.

Appendix B gives the complete first element of the approximated fundamental solution
matrix using the general formulation via equation (32) where p=14 and m=7. The
computations were performed using MATHEMATICA on a SUN SPARC 20 where the
total CPU time was 57·97 seconds. It is seen that the Chebyshev coefficients are
homogeneous polynomials of powers of a up to the order O(a14) and that higher order
terms possess considerably smaller coefficient magnitudes. This expression was then
evaluated for three different values of the parameter a at times spanning the principal
period and compared to the exact solution via equation (45). These results are shown in
Table 1. To select p and m, the matrix elements of the exact and approximate solutions
were plotted over the principal period for all three parameter values. Figure 1 demonstrates
the left-to-right convergence of the approximate solution as the number p of iterations is
increased (a=0·1, m=7), and Figure 2 demonstrates the more even convergence as the
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T 1

The first element of the fundamental solution matrix for the
commutative system where p=14 and m=7. a is the system

parameter and t is the normalized time

a

ZXXXXXXXXXXCXXXXXXXXXXV
t 0·1 0·5 2·0

0 1·00000a 1·00000 1·00000
1·00006b 0·99994 1·00094

1
4 0·34874 0·47746 1·55088

0·34877 0·47754 1·55372
1
2 0·00000 0·00000 0·00000

−0·00021 −0·00016 0·00208
3
4 −0·08483 −0·21769 −7·46049

−0·08543 −0·21772 −7·45842

1 −0·05916 −0·20788 −23·1407
−0·05908 −0·20797 −23·1621

(a), exact solution; (b), approximate (symbolic) solution.

number m of polynomials is increased (a=0·1, p=10). In either case, however, the result
is least accurate when the solution matrix becomes the FTM at t=1. The last graph in
Figure 2 demonstrates that increasing m beyond a certain value cannot improve the
accuracy if p is too low. Since in general one does not know the exact solution, it was found
that the best procedure to achieve a desired accuracy is, for a high value of m, to select
an appropriate p for a converged FTM, and then decrease m until the joint just before
convergence is lost. This should be done at various locations in the parameter region of
interest to ensure uniform convergence before the final analytical approximation is
obtained. It should be noted that this type of convergence study can be accomplished using

Figure 1. The first element of the exact (dashed) and approximate (solid) fundamental solution matrix for the
commutative system plotted over the principal period (versus normalized time) where a=0·1, m=7, and p=(a)
6; (b) 8; (c) 10; (d) 12.
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Figure 2. The first element of the exact (dashed) and approximate (solid) fundamental solution matrix for the
commutative system plotted over the principal period (versus normalized time) where a=0·1, p=10, and
m=(a) 3; (b) 5; (c) 7; (d) 9.

a FORTRAN program at a negligible cost compared to obtaining the parameter-depen-
dent analytical approximation using symbolic software.

Finally it should be noted that, although the A1(a) matrix includes the system parameter,
the alternate formulation can still be utilized in conjunction with the generating solution
F(t, 0) by including the parameter-dependent part of A1(a) (along with A2(a) and A3(a))
in the At(t, a) matrix in equation (35). The term between the integrals in equation (37)
simplifies to

F−1(t, 0)At(t, a)F(t, 0)=$et cos t
et sin t

−et sin t
et cos t % a

2 $1+cos 2t
−sin 2t

−sin 2t
1−cos 2t%

×$ e−t cos t
−e−t sin t

e −t sin t
e −tcos t%=$a0 0

0%, (47)

so that the actual series of integrals in brackets in that equation results in the
exponential solution of this matrix, or diag (exp(at), 1). The solution then is
F(t, a)=F(t, 0) diag (exp(at), 1). Of course, use of the alternate formulation in
conjunction with an expansion in m Chebyshev polynomials would yield an
approximate solution with exp(at) expanded in an (m−1)th degree power series. In
this case the alternate formulation is more efficient than the general formulation only
for aQ 1. If the commutative system matrix (with a fixed) were perturbed by
another time-periodic parameter-dependent matrix, however, the alternate formulation
could be employed such that the complete fundamental matrix solution of equation
(45) is used as the generating function. Such a procedure would be much more
efficient than would the direct application of the general formulation to a perturbed
commutative system.

5.2. M 

The well-known Mathieu equation

ÿ+(a+ b cos t)y=0 (48)
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is analyzed next where a and b are the system parameters. It should be noted that if the
time is normalized in state space form as

ẋ=[A� 1(a)+A� 2(b) cos 2pt]x, A� 1(a)=$ 0
−2pa

2p

0 %, A� 2(b)=$ 0
−2pb

0
0%, (49)

where xT = (x1 x2)= (y ẏ) and the derivatives are with respect to t, then the fundamental
solution matrix of the original second order system is given by

F(p,m)(t, a, b)=T
 T(t)B�(a, b)=T
 T(t)$(1/2p)Im

0
0
Im%B(a, b)$2p

0
0
1%. (50)

However, if equation (48) is first normalized and then transformed to the state space form

ẋ=[A	 1(a)+A	 2(b) cos 2pt]x, A	 1(a)=$ 0
−4p2a

1
0%, A	 2(b)=$ 0

−4p2b
0
0%,

(51)

then the fundamental solution matrix is given directly by equation (32). In either case, the
product operational matrices for f1(t)=1 and f2(t)= cos 2pt are utilized in the
approximation.

Appendix C gives selected coefficients of all four elements of the approximated
fundamental solution matrix using the general formulation via equation (50) where p=24
and m=15. The computations were again performed using MATHEMATICA on a SUN
SPARC 20 where the total CPU time was 15 min 46 s. In Figure 3 the bold line represents
the CPU time required for each of the 24 iterations. It can be seen that higher iteration
steps require increasingly more time since the order of the polynomial coefficients
continually increases and that the first iteration requires more time than do the next two
because it includes the computation of L(a, b) and P(a, b) . All of the Chebyshev
coefficients here are of order O(a12b12), that is they consist of various powers of aibj up to

Figure 3. The CPU time (in s) required for each of the 24 Picard iterations (not the cumulative time after each
iteration) in the Mathieu equation for the general formulation with two parameters (bold), general formulation
with one parameter (thin), and the alternate formulation with one parameter (dashed) which has equivalent
accuracy after 7 iterations.
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T 2

The eigenvalues (Floquet multipliers) of (c) the ‘‘exact’’ Runge–Kutta FTM and the
approximate FTM via (d) the general formulation where p=24, and m=15 and (e) the
constant matrix formulation where p=7 and m=17 for the Mathieu equation with different

parameter sets

b
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

a 0·01 0·75 1·5

−0·75 0·00434; 230·754c 0·00577; 173·295 0·05810; 17·2120
0·00433; 230·754d 0·00577; 173·297 0·05801; 17·2129

0·0 0·999012 0·04442*i −8·47371; −0·11801 −34·3546; −0·02911
0·999012 0·04442*i −8·47367; −0·11800 −34·3551; −0·02909

0·75 0·666062 0·74590*i 0·367642 0·92997*i 0·419352 0·90782*i
0·666062 0·74590*i 0·367642 0·92997*i 0·419352 0·90784*i

1·5 0·158042 0·98743*i 0·321082 0·94705*i 1·33050; 0·75160
0·158292 0·98659*i 0·321692 0·94611*i 1·33493; 0·74892

0·158042 0·98743*ie 0·321012 0·94702*i 1·33124; 0·75052

order p/2=12 such that i+ jE 12, i=0, . . . , 12, j=0, . . . , 12. However, only the
coefficients of T*0 (t), T*1 (t), and T*14(t) such that i+ jE 2 are shown in Appendix C for
brevity. It should be noted that some lower order powers of a and b do not appear in the
coefficients of higher polynomials such as T*14(t) and that higher order terms possess
considerably smaller coefficient magnitudes. This expression was then evaluated for
different values of the parameters at the end of the principal period to obtain different
Floquet Transition Matrices. The eigenvalues or Floquet multipliers were then computed
and compared to those obtained via a fourth order Runge–Kutta (DIVPRK) routine in
the IMSL library, considered here as the ‘‘exact’’ solution, where a tolerance of 10−8 was
used. These results are shown in Table 2. It should be noted that, as explained in section
2, the accuracy in Picard iteration is sensitive to an increase in all parameters unlike
asymptotic techniques which depend on small values of the periodic parameter alone.
Hence, convergence in the (a, b) plane varies radially from the origin. Convergence in both
p and m was studied by plotting the FTM elements versus p while varying m for various
parameter sets in the region of interest as described in section 5.1. Convergence plots for
two of the parameter sets in Table 2 are shown in Figure 4 (one of the a=0·0 cases to
which small-parameter techniques cannot be applied) and Figure 5 (at the edge of the
converged region in parameter space). It can be seen that the FTM near the origin in
parameter space converges faster than does the FTM farther from the origin. Appendix
D contains the trace of the FTM which is used to compute the stability boundaries via
the relation

tr (F(24,15)(1, a, b))=22, (52)

where +2 and −2 correspond to destabilization via tangent and period doubling routes,
respectively, in this Hamiltonian system [17]. Substitution of various values for b into
equation (52) yields 12th-degree polynomial equations in a which may be solved to find
points on the stability boundaries once the complex roots and those outside the converged
region have been eliminated. Figure 6 shows the familiar stability curves computed in this
way in the converged parameter region. The curves coincide with those obtained using
numerical integration of the FTM. The thin line in Figure 3 represents the CPU time



20.0

10.0

p

F
T

M
 e

le
m

en
ts

0.0

–10.0
10.00.0

30.0

10.0

p

F
T

M
 e

le
m

en
ts

0.0

–10.0
10.00.0 20.0

. .   . . 76

Figure 4. All four FTM elements versus number p of Picard iterations for the Mathieu equation via the general
formulation where a=0·0, b=0·75, and m=8. The two diagonal elements (solid line) remain equal.

required for each of the 24 iterations in directly approximating the b-dependent
fundamental solution matrix for a=1·5. This approach, which yields the same O(b12)
coefficients also obtained from substituting a=1·5 into the expression in Appendix C,
requires a total CPU time of 3 min 26 s, a savings of 12 min 20 s over the time required
for the 2-parameter approximation.

Equation (48) may also be analyzed using the alternate formulation outlined in section
4.3. As was discussed there, however, a must be fixed at a given value and the fundamental
solution matrix obtained in terms of only the periodic parameter b. Since the constant part
of the system has the generating solution

eA	 1t = I cos vt+S sin vt, S=$ 0
−v

1/v
0 %, v=2pza, (53)

using the state space version in equation (51), H(b) and K(b) in equation (43) are expressed
as

H(b)= (I&GT)(I&Qbc −S&Qbs)(A	 2(b)&Qd2)(I&Qbc +S&Qbs)

Figure 5. All four FTM elements versus number p of Picard iterations for the Mathieu equation via the general
formulation where a=1·5, b=1·5, and m=15. The two diagonal elements (solid line) remain equal.
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Figure 6. Stability boundaries for the Mathieu equation in the (a, b) parameter plane which result from using
the expression in Appendix D generated by application of the general formulation.

=A	 2(b)&(GTQbcQd2Qbc)+ (A	 2(b)S−SA	 2(b))&(GTQbcQd2Qbs)

− (SA	 2(b)S)&(GTQbsQd2Qbs),

K(b)= (I&GT)(I&Qbc −S&Qbs)(A	 2(b)&Qd2)(I&bc +S&bs)

=A	 2(b)&(GTQbcQd2bc)+ (A	 2(b)S−SA	 2(b))&(GTQbcQd2bs)

− (SA	 2(b)S)&(GTQbsQd2bs), (54)

where d2 contains the Chebyshev coefficients in the expansion of f2(t)= cos 2pt. Because
a must be fixed beforehand, the value of a=1·5 is chosen and the b-dependent
fundamental solution matrix is approximated via equation (43) where p=7 and m=17
(see Appendix E). The computations required just 34 s, a savings of 2 min 52 s over the
time required for the b-dependent approximation using the general formulation where both
results are accurate to within 10−2 at a= b=1·5. The dashed line in Figure 3 represents
the CPU time required for each of the 7 iterations and is higher at first from the time used
in computing H(b) and K(b). An additional power in b is gained at each iteration in this
formulation so that all of the Chebyshev coefficients are of order O(bp)=O(b7) and, in
general, are more accurate than the O(bp/2)=O(b12) coefficients of the general formulation

Figure 7. All four FTM elements versus number p of Picard iterations for the Mathieu equation via the
alternate formulation where a=1·5, b=1·5, and m=17. The two diagonal elements (solid line) remain
equal.
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Figure 8. A double inverted pendulum subjected to a periodic follower force.

as can be seen from the corresponding Floquet multipliers in Table 2. The faster
convergence is also shown in Figure 7 for the same parameter set as in Figure 5. Thus
an improvement over the general formulation in accuracy as well as CPU time is achieved
via the alternate formulation provided that a is selected beforehand.

5.3.       

As an example of a higher order system, consider the double inverted pendulum of
Figure 8 subjected to a follower force with both constant and periodically varying
components. The time-periodic equations of motion for this system (the time-invariant
form of which has been treated by Leipholz [18] and Herrmann [19]), may be expressed
in the linearized state space form as

ẋ1 0 0 1 0 x1

ẋ2 0 0 0 1 x2

G
G

G

F

f

G
G

G

J

j

G
G

G

K

k

G
G

G

L

l

G
G

G

F

f

G
G

G

J

j
ẋ3

=
(−3k�+ p̄(t))/2 k�− p̄(t)/2 −B1/2−B2 B2 x3

,

ẋ4 (5k�− p̄(t))/2 −2k�+(3/2− g)p̄(t) B1/2+2B2 −2B2 x4

(55)
wjere (x1 x2 x3 x4)= (f1f2f�1f�2) is the state vector, k�= k/ml2 is the normalized stiffness,
B1 = b1/ml2 and B2 = b2/ml2 are the normalized damping constants, p̄(t)=
(P
 1 +P
 2 cos vt)/ml=P1 +P2 cos vt is the normalized applied load, g is the load direction
parameter, and v is the internal driving frequency. As with the Mathieu equation, the
fundamental solution matrix may be computed after normalizing in either second order
or state space form. If the latter is done, then the solution matrix is given by

F(p,m)(t, a)=T
 T(t)B�(a)=T
 T(t)$(v/2p)I2m

0
0
I2m%B(a)$(2p/v)I2

0
0
I2%, (56)

where a includes all the system parameters. In either case, the product operational matrices
for f1(t)=1 and f2(t)= cos 2pt are utilized after normalizing the period to one.
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Figure 9. The CPU time (in s) required for each of the 24 Picard iterations (not the cumulative time after each
iteration) in the double inverted pendulum problem for the general formulation with two parameters (bold) and
the general formulation with one parameter (thin).

For the fixed parameter set k�=1·0, B1 =0·01, B2 =0·01, v=2·0, and g=1·0, the
P1 −P2 dependent solution may be approximated. Appendix F gives selected coefficients
of the leading four elements of the resulting fundamental solution matrix using the general
formulation via equation (56) where p=24 and m=19. The computations were again
performed using MATHEMATICA on a SUN SPARC 20 where the total CPU time to
obtain these coefficients was 6 h 6 min 38 s and the bold line in Figure 9 represents the
time required for each of the 24 iterations. All of the Chebyshev coefficients here are of
order O(P12

1 P12
2 ), that is they consist of various powers of Pi

1Pj
2 up to order p/2=12 such

that i+ jE 12, i=0, . . . , 12, j=0, . . . , 12. However, only the coefficients of T*0 (t) and
T*1 (t) such that i+ jE 2 are shown in Appendix F for brevity. The thin line in Figure
9 represents the CPU time required for each of the 24 iterations in directly approximating
the P2-dependent fundamental solution matrix for P1 =1·0. This approach, which yields
the same O(P12

2 ) result also obtained from substituting P1 =1·0 into the expression in
Appendix F, requires a total CPU time of 1 h 41 min 50 s, a savings of 4 h 24 min 48 s
over the time required for the 2-parameter approximation. It should be noted that the

Figure 10. The response f1(t) (solid line) and f2(t) (dashed line) versus normalized time for the double inverted
pendulum with parameter set k�=1·0, B1 =0·01, B2 =0·01, v=2·0, g=1·0, P1 =1·0, P2 =0·7 and initial
conditions (f1 f2 f� 1 f� 2)= (1 0 0 0).
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alternate formulation of section 4.3 could also be used to obtain a solution in terms of
P2 only, although that is not done here. For P1 =1·0 and P2 =0·7, the response to initial
conditions (x1 x2 x3 x4)= (1 0 0 0) is plotted in Figure 10 versus the normalized time t

over fifty principal periods directly via equation (33). Here it is seen that, in contrast to
the truncated point mapping method of Guttalu and Flashner [3, 4], the proposed
technique allows the solution to be obtained as an explicit function of time. The Floquet
multipliers for this parameter set were computed to be 0·26702 0·9418*i and
−0·17912 0·9501*i which have absolute values of 0·9789 and 0·9669, respectively. Since
their moduli are less than one, the multipliers lie within the unit circle of the complex plane
thus indicating asymptotic stability. This can be seen from the decay of the response in
Figure 10, which is indistinguishable from that obtained via numerical integration.

6. CONCLUSIONS

A technique for symbolic computation of the fundamental solution matrix for linear
time-periodic dynamical systems of arbitrary dimension explicitly as a function of the
system parameters and time has been presented. Both Picard iteration and expansion in
shifted Chebyshev polynomials with their associated integration and product operational
matrices are employed in this technique. It was shown that only matrix multiplications and
additions are utilized in the computation of the Chebyshev coefficients of the fundamental
solution matrix, which are expressed as homogeneous polynomials of the system
parameters. This procedure permits one to obtain a closed form approximation of the
fundamental solution matrix for general periodic systems. It was also shown that, unlike
traditional perturbation or averaging, the technique is not based on expansion in terms
of a small parameter and can therefore be successfully applied to periodic systems whose
internal excitation is strong. Two formulations were proposed: one applicable to general
systems and the other for equations which contain a constant system matrix. The latter
formulation restricts the set of parameters that can be used in the solution but converges
much faster than the former formulation. Three different example problems, including a
double inverted pendulum subjected to a periodic follower force, were included, and results
indicated that the proposed method is efficient and the convergence is excellent. It was also
shown that the stability boundaries for the Mathieu equation may be obtained from the
trace of the parameter-dependent FTM. Possibilities for future work include using the
formulations presented here to determine stability and bifurcation conditions as well as
controller gains in closed form as a function of the system parameters for higher
dimensional systems.
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APPENDIX A: THE KRONECKER PRODUCT

Consider a 2×2 square matrix A and an n×m matrix B. The Kronecker product is

A&B=$a11B
a21B

a12B
a22B%. (A.1)

The resulting 2n×2m matrix has dimension dim (A&B)= (2n, 2m). If dim (A)=dim (C)
and dim (B)=dim (D), then the relation (A&B)(C&D)= (AC&BD) holds.

APPENDIX B: APPROXIMATE SOLUTION OF COMMUTATIVE SYSTEM

The following is the complete approximation of the first element of the
fundamental solution matrix for the commutative system in section 5.1 obtained using
MATHEMATICA. Five significant figures are included.
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F(14,7)
11 (t, a)=

(0·24553+0·0051070*a−0·060330*ag2−0·082741*ag3−0·040813*ag4

−0·057310*ag5+0·0013716*ag6+0·0033286*ag7−0·018509*ag8

+0·0036181*ag9+0·0023376*ag10−0·0016598*ag11

+0·00012657*ag12+0·000065170*ag13−0·000013919*ag14)*T*0 (t)

+ (−0·48263−0·18603*a−0·14556*ag2−0·13693*ag3−0·068702*ag4

−0·10213*ag5+0·0093078*ag6+0·0040990*ag7−0·033657*ag8

+0·0074919*ag9+0·0038622*ag10−0·0030029*ag11+0·00026449*ag12

+0·00011090*ag13−0·000025182*ag14)*T*1 (t)+(0·24042−0·037125*a

−0·056560*ag2−0·048153*ag3−0·032410*ag4−0·067243*ag5

+0·018349*ag6−0·00027886*ag7−0·024197*ag8+0·0069384*ag9

+0·0021546*ag10−0·0021739*ag11+0·00025315*ag12

+0·000069647*ag13−0·000018914*ag14)*T*2 (t)+(−0·043825

+0·11460*a+0·054553*ag2+0·030591*ag3+0·0027666*ag4

−0·029860*ag5+0·020138*ag6−0·0023430*ag7−0·013510*ag8

+0·0051657*ag9+0·00076101*ag10−0·00012716*ag11

+0·00019691*ag12+0·000035216*ag13−0·000012532*ag14)*T*3 (t)

+ (−0.0062832−0·040524*a+0·0086368*ag2+0·027709*ag3

+0·010138*ag4−0·010369*ag5+0·015852*ag6−0·0019293*ag7

−0·00064293*ag8+0·0033461*ag9+0·000075450*ag10

−0·00063279*ag11+0·00013029*ag12+0·000014169*ag13

−7·1176*10g−6*ag14)*T*4 (t)+(0·0050186 +0·0020560*a

−0·016524*ag2+0·0016623*ag3+0·0015351*ag4

−0·0045295*ag5+0·0084133*ag6−0·00099757*ag7−0·0025196*ag8

+0·0017482*ag9−0·00013697*ag10−0·00023631*ag11

+0·000066212*ag12+2·4179*10g−6*ag13−2·8263*10g

−6*ag14)*T*5 (t)+(−0·0010099 +0·0025677*a+0·00054079*ag2

+0·00040765*ag3−0·0021004*ag4−0·0027421*ag5+0·0034489*ag6

−0·00073006*ag7−0·00078287*ag8+0·00071068*ag9

−0·00010833*ag10−0·000058383*ag11+0·000022006*ag12

+2·7742*10g−7*ag13−8·9391*10g−7*ag14)*T*6 (t).
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APPENDIX C: APPROXIMATE SOLUTION OF MATHIEU EQUATION VIA THE
GENERAL FORMULATION

The following contains selected coefficients of all four elements of the approximated
fundamental solution matrix from the general formulation via equation (50) for the
Mathieu equation in section 5.2 obtained using MATHEMATICA. All of the Chebyshev
coefficients are of order O(a12b12); however, only the coefficients of order O(a2b2) in T*0 (t),
T*1 (t), and T*14(t) are shown. Five significant figures are included.

F(24,15)
11 (t, a, b)=

(1·0−7·4022*a−0·69575*b+17·756*ag2−0·61894*a*b

−3·1028*bg2+· · · )*T*0 (t)+ (−9·8696*a+4·3651*10g−12*b+28·410*ag2

−1·5007*a*b−4·9348*bg2+· · · )*T*1 (t)+ · · ·+ (1·0697*10g−8*b

+6·1690*10g−7*a*b−0·000012710*bg2+· · · )*T*14(t),

F(24,15)
12 (t, a, b)=

(0·5−2·0561*a+0·65212*b+3·1962*ag2−1·5662*a*b

−0·049695*bg2+· · · )*T*0 (t)+ (0·5−3·0842*a+1·0760*b+5·3270*ag2

−2·5872*a*b−0·096485*bg2+· · · )*T*1 (t)+ · · ·+ (5·3489*10g−9*b

+3·2604*10g−7*a*b−6·3447*10g−6*bg2)*T*14(t),

F(24,15)
21 (t, a, b)=

(−19·739*a+8·7302*10g−12*b+81·174*ag2+8·0949*a*b

−9·8696*bg2)*T*0 (t)+(−19.739*a +3·5765*b+121·76*ag2+16·762*a*b

−12·778*bg2)*T*1 (t)+· · ·+ (−2·6698*10g−6*a*b

+1·1808*10g−18*bg2)*T*14(t),

F(24,15)
22 (t, a, b)=

(1·0−7·4022*a+1·5899*b+17·756*ag2−4·4657*a*b−1·4570*bg2)*T*0 (t)

+ (−9·8696*a+1·7882*b+28·410*ag2−5·4746*a*b−2·8129*bg2)*T*1 (t)

+ · · ·+ (1·3525*10g−7*b+2·1923*10g−6*a*b−0·000095334*bg2)*T*14(t).

APPENDIX D: TRACE OF FTM FOR MATHIEU EQUATION

The following is the complete trace of order O(a12b12) of the approximated Floquet
Transition Matrix (FTM) for the Mathieu equation in section 5.2 obtained using the
expression in Appendix C. The stability boundaries are obtained by setting the following
expression equal to 22. Five significant figures are included.



. .   . . 84

tr (F(24,15)(1, a, b))=

2·0−39·478*a+129·87*ag2−170·91ag3+120·48*ag4−52·852*ag5

+15·807*ag6−3·4287*ag7+0·56401*ag8−0·072765*ag9+0·0075596*ag10

−0·00064593*ag11+0·000046132*ag12+3·5792*10g−9*b+3·4102*10g

−7*a*b+3·4377*10g−6*ag2*b+6·9151*10g−6*ag3*b+8·1218*10g

−7*ag4*b−0·000013677*ag5*b−0·000017882*ag6*b

+0·000034434*ag7*b−8·8942*10g−6*ag8*b−0·000017321*ag9*b

+0·000018431*ag10*b−8·1420*10g−6*ag11*b−19·739*bg2

+50·921*a*bg2−52·682*ag2*bg2+30·247*ag3*bg2−11·137*ag4*bg2

+2·8625*ag5*bg2−0·54374*ag6*bg2+0·080236*ag7*bg2

−0·010005*ag8*bg2+0·0012691*ag9*bg2−0·00018231*ag10*bg2

+0·00025982*bg3−0·00041502*a*bg3+0·0016618*ag2*bg3

−0·0046893*ag3*bg3+0·0059355*ag4*bg3−0·0036123*ag5*bg3

+0·00043473*ag6*bg3+0·0010401*ag7*bg3−0·00096680*ag8*bg3

+0·00048355*ag9*bg3+1·6271*bg4−2·2923*a*bg4+1·4233*ag2*bg4

−0·52586*ag3*bg4+0·13125*ag4*bg4−0·023634*ag5*bg4

+0·0030291*ag6*bg4−0·000095092*ag7*bg4−0·00016207*ag8*bg4

−0·00014486*bg5+0·00094262*a*bg5−0·0020865*ag2*bg5

+0·0020760*ag3*bg5−0·00084862*ag4*bg5−0·00023403*ag5*bg5

+0·00051173*ag6*bg5−0·00033510*ag7*bg5−0·018464*bg6

+0·018040*a*bg6−0·0080620*ag2*bg6+0·0020871*ag3*bg6

−0·00017100*ag4*bg6−0·00020110*ag5*bg6+0·00017612*ag6*bg6

+0·000047915*bg7−0·00014690*a*bg7+0·00015016*ag2*bg7

−0·000041058*ag3*bg7−0·000045028*ag4*bg7+0·000053278*ag5*bg7

+0·000060736*bg8−0·000043842*a*bg8−1·3738*10g−6*ag2*bg8

+0·000029818*ag3*bg8−0·000032847*ag4*bg8−2·5103*10g−6*bg9

+3·4706*10g−6*a*bg9−9·6823*10g−7*ag2*bg9−1·1177*10g

−6*ag3*bg9+3·1946*10g−9*bg10−5·8542*10g−7*a*bg10+1·3108*10g

−6*ag2*bg10+5·7289*10g−9*bg11−7·3996*10g

−9*a*bg11−7·7407*10g−9*bg12.

APPENDIX E: APPROXIMATE SOLUTION OF MATHIEU EQUATION VIA THE
ALTERNATE FORMULATION

The following contains selected coefficients of the first element of the approximated
fundamental solution matrix from the alternate formulation via equation (43) for
the Mathieu equation in section 5.2 with a=1·5 obtained using MATHEMATICA. All
of the Chebyshev coefficients are of order O(b7); however, only the coefficients in T*0 (t),
T*1 (t), and T*16(t) are shown. Five significant figures are included.
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F(7,17)
11 (t, b)=

{(1·0+0·19130*b−0·15309*bg2−0·11136*bg3−0·015859*bg4

+0·0034148*bg5+0·00049605*bg6−0·000035975*bg7)*T*0 (t)

+ (0·085588*b−0·15543*bg2−0·15754*bg3−0·028389*bg4+0·0056275*bg5

+0·00088084*bg6−0·000071968*bg7)*T*1 (t)+· · ·+ (0·000070110*b

−0·00016223*bg2+0·000020360*bg3−0·00026916*bg4

+0·000039529*bg5+5·8031*10g−6*bg6−5·9949*10g

−7*bg7)*T*16(t)}* cos (7·6952*t)+{(−0·054348*b +0·20676*bg2

+0·011261*bg3+0·014069*bg4+0·000039671*bg5−0·00046546*bg6

−9·6538*10g−6*bg7)*T*0 (t)+(0·21869*b +0·19093*bg2+0·023780*bg3

+0·029000*bg4+1·8713*10g−6*bg5−0·00087213*bg6−8·7557*10g

−6*bg7)*T*1 (t)+· · ·+ (0·00043841*b −0·00057814*bg2−0·00018025*bg3

+0·000093777*bg4+0·000038876*bg5−1·0976*10g−6*bg6−5·4250*10g

−7*bg7)*T*16(t)}* sin (7·6952*t).

APPENDIX F: APPROXIMATE SOLUTION OF DOUBLE INVERTED PENDULUM

The following contains selected coefficients of the leading four elements of the
approximated fundamental solution matrix from the general formulation via equation (56)
for the double inverted pendulum with a periodic follower force in section 5.3 obtained
using MATHEMATICA. All of the Chebyshev coefficients are of order O(P12

1 P12
2 );

however, only the coefficients of order O(P2
1P2

2) in T*0 (t) and T*1 (t) are shown. Five
significant figures are included.

F(24,19)
11 (t, P1, P2)=

(0·51852−0·10148*P1 +0·18735*P2 −0·023678*P1
g2+0·053361*P1*P2

−0·021881*P2
g2+· · · )*T*0 (t)+ (−0·28383−0·22223*P1 +0·19612*P2

−0·063971*P1
g2+0·067587*P1*P2 −0·032312*P2

g2+· · · )*T*1 (t)+ · · · ,

F(24,19)
12 (t, P1, P2)=

(0·16981+0·0058477*P1 −0·13296*P2 −0·0050470*P1
g2−0·024209*P1*P2

+0·017079*P2
g2+· · · )*T*0 (t)+ (−0·034060+0·099789*P1 −0·11882*P2

+0·019276*P1
g2−0·021598*P1*P2 +0·025314*P2

g2+· · · )*T*1 (t)+ · · · ,

F(24,19)
21 (t, P1, P2)=

(0·42454+0·14941*P1 +0·067228*P2 +0·059353*P1
g2+0·0016377*P1*P2

+0·0074051*P2
g2+· · · )*T*0 (t)+ (−0·085152+0·23279*P1 +0·17706*P2

+0·11556*P1
g2+0·018990*P1*P2 +0·0054839*P2

g2+· · · )*T*1 (t)+ · · · ,

F(24,19)
22 (t, P1, P2)=

(0·43362−0·15217*P1 −0·080088*P2 −0·046025*P1
g2−0·016773*P1*P2

−0·0056534*P2
g2+· · · )*T*0 (t)+ (−0·26680−0·26994*P1 −0·18122*P2

−0·097363*P1
g2−0·040087*P1*P2 −0·0039017*P2

g2+· · · )*T*1 (t)+ · · · .


